Mobility of black carbon in drained peatland soils
نویسندگان
چکیده
Amount, stability, and distribution of black carbon (BC) were studied at four sites of a large peatland (“Witzwil”) formerly used as a disposal for combustion residues from households to derive BC displacement rates in the profile. Possible artefacts from thermal oxidation with Differential Scanning Calorimetry (DSC) on BC quantification of C-rich deposits were inferred by choosing three sites from a second peatland with no historical record of waste disposal as a reference (“Seebodenalp”). All sites were under grassland at time of sampling, but were partially cropped in the past at Witzwil. Mean BC contents in topsoils of Witzwil ranged from 10.7 to 91.5 (0–30 cm) and from 0.44 to 51.3 (30–140 cm) mg BC g−1 soil, corresponding to BC/OC ratios of 0.04 to 0.3 (topsoil) and 0.02 to 0.18 (deeper soil). At three sites of Seebodenalp, BC was below the detection limit of 0.4 mg g−1 organic soil, indicating negligible formation of BC during thermal oxidation of peat. 13C NMR spectra corroborated the high BC contents at Witzwil. The data support a considerable vertical transport of BC given that soils were ploughed not deeper than 30 cm since abandonment of waste application about 50 years ago. The total amount of BC in the Witzwil profiles ranged from 3.2 to 7.5 kg BC m−2, with 21 to 69 percent of it stemming from below the former ploughing depth. Under the premise of negligible rates of BC consumption since abandonment of waste application, minimum BC transport rates in these peats are 0.6 to 1.2 cm a−1. The high mobility of BC might be explained by high macropore volumes in combination with occasional water saturation. By means of DSC peak temperatures, different types of BC could be distinguished, with deeper horizons containing BC of higher thermal stability. Application of combustion residues likely involved a mixture of various BC types, of which thermally more stable ones, most likely soots, were preferentially transported downwards. Correspondence to: J. Leifeld ([email protected])
منابع مشابه
Macroscale Variation in Peat Element Concentrations in Drained Boreal Peatland Forests
Information on the variation in soil element concentrations at different spatial scales is needed for, e.g., designing efficient sampling strategies, upscaling the processes related to carbon cycling, and planning land use and management. In spite of intensive land use, such information concerning peat soils is still scarce. We analyzed the variation in peat mineral element concentrations in bo...
متن کاملDirect Human Impacts on the Peatland Carbon Sink
Northern peatlands occupy over 3 million km2 globally and contain the largest carbon (C) pool (typically >100 kg C m-2) among terrestrial ecosystems. Agri culture, forestry, and peat harvesting are the principal humaninduced activities that alter the peatland and hence the distribution and flux of carbon. As a prerequisite to those uses, the peatland is usually drained, which has longterm ef...
متن کاملCurrent and future CO2 emissions from drained peatlands in Southeast Asia
Forested tropical peatlands in Southeast Asia store at least 42 000 Million metric tonnes (Mt) of soil carbon. Human activity and climate change threatens the stability of this large pool, which has been decreasing rapidly over the last few decades owing to deforestation, drainage and fire. In this paper we estimate the carbon dioxide (CO2) emissions resulting from drainage of lowland tropical ...
متن کاملResponse of vegetation and net ecosystem carbon dioxide exchange at different peatland microforms following water table drawdown
[1] Northern peatlands are significant stocks of terrestrial soil carbon, and it has been predicted that warmer temperatures and lower water tables resulting from climate change will convert these ecosystems into sources for atmospheric carbon dioxide (CO2). However, these predictions do not consider the potential for hydrologically induced ecological succession or the spatial variability of ca...
متن کاملDrainage affects tree growth and C and N dynamics in a minerotrophic peatland.
The lowering of the water table resulting from peatland drainage may dramatically alter C and N cycling in peatland ecosystems, which contain one-third of the total terrestrial C. In this study, tree annual ring width and C (delta(13)C) and N (delta(15)N) isotope ratios in soil and plant tissues (tree foliage, growth rings, and understory foliage) in a black spruce-tamarack (Picea mariana-Larix...
متن کامل